Why Palladium in cables, wiring, etc. . .?


There seems to be a growing aura around Palladium. A perfectly good noble metal, Palladium came to popular fame during the now very dubious episode of cold fusion, proposed by Martin Fleischmann and Stanley Ponse. But the word Palladium itself has a much older and classical origin. A Palladium was originally a statue bearing the likeness of the goddes Pallas, and only much later it referred to buildings inspired by the neo-classical style of Andrea Palladio. Today the word bears both connotations of classical understated elegance as well as hinting at quasi esoteric neo-science and mysteries. Hence it is easy to understand why savvy marketing consultants may warmly recommend that products and brands aspiring to prestige may be named after the metal.

Yet, when it comes to discovering a physical reason why engineers may opt to actually employing this fine metallic element as a conductor in interconnects, chords, wires and electrical contacts, things become rather murky and unclear. For example, SilverSmith Audio now advertises some of its products as containing Palladium. And the newest iteration of the Dodson 218 DAC, by virtue of the company having been purchased by SilverSmith, now sports internal Palladium-alloy wiring.

What is it, besides its resistance to tarnish and corrosion, and the obvious aura in the name, that is causing such engineering choices? Palladium's disconcertingly high index of resistivity does not seem to justify its selection. Per the list below, Palladium is 6.65 times as resistive as
Silver, 6.28 times as resistive as copper, almost 4 times as resistive as Aluminum, and
approximately 10% more resistive than Iron. The good news is that Palladium appears
to be a little bit more conductive than Tin, and almost twice as conductive as Lead.

Resistivity:
Silver: (20 °C) 15.87 nO·m
Copper: (20 °C) 16.78 nO·m
Gold: (20 °C) 22.14 nO·m
Aluminum: (20 °C) 26.50 nO·m
Rhodium: (0 °C) 43.3 nO·m
Zinc: (20 °C) 59.0 nO·m
Nickel: (20 °C) 69.3 nO·m
Iron: (20 °C) 96.1 nO·m
Platinum: (20 °C) 105 nO·m
Palladium: (20 °C) 105.4 nO·m
Tin: (0 °C) 115 nO·m
Lead: (20 °C) 208 nO·m

Any ideas?
guidocorona
Once upon a time aluminum was the coolest, futuristic marketing item around. More recently, I suppose, titanium made a showing. Why buy a phone / headphones / book-end / widget made out of "metal," when you could have one made out of titanium? Who doesn't want that? It's lighter, better, faster (and in some applications, it certainly is), so it clearly would make a better pen.

Knowing nothing of its electrical characteristics (save the eloquently simply stats above) I vote for the hypothesis that the palladium fascination is more of the same.
Not to stick my neck out too far, but I think a large part of the reason is inductance, specifically inductance at frequency. I know XLO, and probably others, feel that DC resistance isn't the overarching factor that it might seem based on the 'numbers game', since audio deals with AC. If I speculate that some of these precious metals feature a higher increase in self-inductance with frequency compared to copper, that might explain why some feel that gold and palladium sound more 'natural', perhaps because these metals slightly reduce harshness and glare.
Just a guess.
Don't kill the messenger.
Metallurgically speaking, I can't help you but from a "...how it actually sounds point of view..." my admittedly limited exposure to palladium tells me it's a champ at detail retrieval and refinement without edginess.