Here I quite clearly state, I bolded it for you, what I wrote, that again clearly states AUDIO frequencies and frequencies CLOSE TO AUDIO that can sub-modulate down to the audio band.
Now, perhaps a bit of an education to fill some missing holes in your knowledge.
>>>>Sub-modulate down to the audio band? Are you high? Radio Waves are not even in the same domain as acoustic waves. How can MHz or GHz electromagnetic waves submodulate down to the acoustic band? It almost sounds like you actually think the acoustic waveform is traveling through the wires and cables.
Now, perhaps a bit of an education to fill some missing holes in your knowledge.
- Rectification acts as a modulation function. Rectifying AC and you get a DC component as a modulation product. Rectify electrical AM radio signals and what do you get? ... Audio frequencies. Why can a dimmer be so problematic? First you get the 120Hz ripples, but then on top of that, you get high frequency ringing which rides on top of the AC --- gets rectified .. still following me? ... and guess what, you get 120Hz bursts getting past low frequency filters, plus harmonics. Isn't noise grand?
- What happens when you sample an FM radio signal at 100MHz with a 100MHz ADC? ... you get audio frequencies. Wow huh! What happens when the noise from a 100KHz frequency switching power supply say gets into a 96Khz DAC clock, hmmm... you get 4KHz. Now most up-sample, so it would be high frequency harmonics of the 100Khz impacting the say 768KHz 8x oversampled clock of an R2R DAC, so you have to be concerned with high frequency noise up near that frequency. With a sigma-delta DAC, the harmonic products are more complex.