Filter capacitance-how does it relate to amplifier performance?


I have a Unison Research Due amplifier that drives my Totem Forest Signature with ease. It has 100wpc in 8ohm and 180wpc in 4ohm. It has a filter capacitance of 80,000uF

I previously had a Atoll in100 amplifier 100wpc in 8 ohm, 140wpc in 4 ohm Capacitance of 31,474 uFMoving up the Atoll line the in200 has 120wpc in 8 ohm and 200wpc in 4 ohm and filter capacitance of 62,000uF
The Atoll in300 has 150wpc in 8 ohm and 260 Epcot in 4 ohm with a filter capacitance of 81,600uF. These also had no trouble driving my speakers.

My understanding of capacitors is that they store energy. Does this mean that my Due amplifier is just as powerful  as the on paper more powerful Atoll in300?

For comparison sake with my Due amplifier I demoed a Plinius Hautonga integrated amp with 200wpc in 8 ohm and 280wpc in 4 ohm. I did not hear any appreciable difference in bass or other frequencies.

So 3 questions.

1) Is my Due amplifier much more powerful than the wpc  indicates?
2) How does filter capacitance relate to power in an amplifier?

3) Why do manufacturers rarely publish this spec? I could only find a few examples.

Thanks
traceyc

Showing 1 response by atmasphere

My understanding of capacitors is that they store energy. Does this mean that my Due amplifier is just as powerful  as the on paper more powerful Atoll in300?
No. It just means that the energy storage for the output section will have less noise so less intermodulation at full power.

But one thing left out is the voltage of the power supply with all these different amps. Its important because in the formula for electron storage in a capacitor, the voltage dominates the equation


W (work) =1/2 (C xVsquared)

where C is capacitance  and V is voltage. So by raising the voltage a little, you raise the storage a lot!

BTW, its the storage in the supply that is usually what is being quoted when the manufacturer states the 'amps' it has- for example 80 amps. If we use that figure we see that its obviously not output power, since using the power formula

P=Isquared x R  (where P is power in watts, I is current in amps and R is resistance in ohms)


If we give the amp the benefit of the doubt and state a 1 ohm load, then the power is simply the current squared. No-one makes a 8400 watt amp. Into 2 ohms this would be 16,800 watts....

So a value like that is actually the current that flows for 10mS when the power supply is shorted out. Its an easier way of understanding the energy there instead of the 1st formula I showed above.

Our MA-2 amplifier has 72,000uf at 150 Volts... it can easily do that 80 amps and its a 220 watt tube amp. Capacitive values like this are there solely because the amp sounds better when they are.