Why Palladium in cables, wiring, etc. . .?


There seems to be a growing aura around Palladium. A perfectly good noble metal, Palladium came to popular fame during the now very dubious episode of cold fusion, proposed by Martin Fleischmann and Stanley Ponse. But the word Palladium itself has a much older and classical origin. A Palladium was originally a statue bearing the likeness of the goddes Pallas, and only much later it referred to buildings inspired by the neo-classical style of Andrea Palladio. Today the word bears both connotations of classical understated elegance as well as hinting at quasi esoteric neo-science and mysteries. Hence it is easy to understand why savvy marketing consultants may warmly recommend that products and brands aspiring to prestige may be named after the metal.

Yet, when it comes to discovering a physical reason why engineers may opt to actually employing this fine metallic element as a conductor in interconnects, chords, wires and electrical contacts, things become rather murky and unclear. For example, SilverSmith Audio now advertises some of its products as containing Palladium. And the newest iteration of the Dodson 218 DAC, by virtue of the company having been purchased by SilverSmith, now sports internal Palladium-alloy wiring.

What is it, besides its resistance to tarnish and corrosion, and the obvious aura in the name, that is causing such engineering choices? Palladium's disconcertingly high index of resistivity does not seem to justify its selection. Per the list below, Palladium is 6.65 times as resistive as
Silver, 6.28 times as resistive as copper, almost 4 times as resistive as Aluminum, and
approximately 10% more resistive than Iron. The good news is that Palladium appears
to be a little bit more conductive than Tin, and almost twice as conductive as Lead.

Resistivity:
Silver: (20 °C) 15.87 nO·m
Copper: (20 °C) 16.78 nO·m
Gold: (20 °C) 22.14 nO·m
Aluminum: (20 °C) 26.50 nO·m
Rhodium: (0 °C) 43.3 nO·m
Zinc: (20 °C) 59.0 nO·m
Nickel: (20 °C) 69.3 nO·m
Iron: (20 °C) 96.1 nO·m
Platinum: (20 °C) 105 nO·m
Palladium: (20 °C) 105.4 nO·m
Tin: (0 °C) 115 nO·m
Lead: (20 °C) 208 nO·m

Any ideas?
guidocorona

Showing 9 responses by tbg

Guido, I have been reading about superconductivity. I found that, "Superconductivity does not occur in noble metals like gold and silver, nor in pure samples of ferromagnetic metals." Like everything at the quantum level, funny things happen.
Sabai, when I was a kid we used to play with mercury. I once made a Wood's metal case for my cartridge. It includes mercury. Also I once had the Keith Monk's tone arm that had four mercury baths to lead the cartridge information to wire in the mounting housing. The mercury also helped to dampen the tone arm. It was excellent with the London Decca cartridge.
Nevertheless, Guido, the Mercury at least looked solid. I am not sure anyone really knew about superconductivity then. I really don't know why he was vetted to mercury. He never said. He was with the Redstone facility.
I think Palladium's not oxidizing is its attraction. I have heard two different Palladium ics and find they have a soft and overly midrangy. I guess I just prefer silver or copper. I think it draws easily also.
Kevziek, I am afraid you are being too simplistic. There is the fact that copper oxide is very resistive and silver much less so. I don't like palladium's sound and for that matter gold's sound, but neither oxidizes.

There are substantial differences in the sounds of various interconnects and no one has a handle on what material, what gauge, what geometry, what conductivity of the connectors, what termination, what dielectric, what length etc. are needed for the best sounding.

You may be making the usual non-sensical argument that wire is wire. Since few would agree with you, I wonder why you would be posting this.
Kevziek and Zaikesman, sorry I misinterpreted what Kewziek was saying. I guess I spend too much time reading on Prop Head on AA.

I once had the carbon First Wire and now use the non-metal Cerious Technologies interconnects. I had to abandon the First Wire because its high resistance was causing me ground loop problems. The Cerious does not have such high resistance.

My initial posting was merely to suggest one reason why some designers are using palladium wire and to mention my impressions of the "sound" of palladium.

I heard of a guy who was achieving quite low resistance by using liquid nitrogen poured into the channel between his amp and speakers that was filled with mercury. I never really understood why he used mercury as copper would have also approached absolute zero and no resistance. Too bad that the superconductivity at more normal temperatures proved impossible.
Zaikesman, I this is caused by ground loops through the grounding of interconnects. I tried metal shielding with no benefits.
It may also have been the efficient horn speakers I had at the time.

My thinking is that there is greater resistance to ground on the path involving the vdHs. I thought the was commonly accepted as a problem with them.
Ait, I heard a superconducting cables long ago. It was in northern Alabama and the guy had mercury in a well leading from his amp to his speakers with pigtails at either end to the amp and speakers. He filled the well with liquid nitrogen. I did not know his system at all, but it sounded okay.