Spikes versus wall coupling


I have a Polk SRS-SDA 2.3 speakers. They are 185 lbs each and currently sit on thier furniture glides on a maple floor, over subfloor, over trusses. No carpet. They have a passive radiator for lowest base at the bottom of the cabinet, and I roll to a subwoofer at 60HZ. I like to move them occasionally so have been reluctant to use spikes.

My question is what am I really missing sound wise? And would wall coupling do as well as spikes. I can put them on some marble slabs,as another alternative, or remove the glides and have the bottom fully sit on the floor, o rthe marble. I do not have a turntable. Or should I spike them despite the hassle?
gammajo

Showing 3 responses by markphd

There is a product which might serve your needs. They are called "Superspikes". It's a spike which fits on top of a flat disk. However, it's all integrated into a single unit. I don't know who manufactures them. However, you can see them at www.uhfmag.com Just link to "The Audiophile Store" when you get to their homepage.

The purpose of spikes is to decouple the speakers from the floor. The tiny point creates an impedence mismatch (mechanical, not electrical impedence) It makes it more difficult for sound waves to pass through to the floor and shake, rattle and roll the rest of the house.

If you couple a speaker to wall studs, the objective is the same as using a heavy equipment stand. You want to use the mass of the wall and attached structure to absorb any vibrations from the component and disspipate gradually. It also works theother way. It absorbs and dissipates any vibrations in the environment from travelling into the component.
If vibrations are not eliminated at source, there are two things you can do. First, you could isolate (decouple) the vibration. Second, you could transfer the vibration to another object (couple) and dissipate it in a non-audible form of energy. Rather than think of these as two "schools of thought" which are in opposition, think of them as two ways to achieve the same result. They can be used together. It is not necessarily one or the other, although one may be better in a particular application.

Using spikes or cones under speakers or electronic components isolates vibration. Because there is less surface area between the vibrating object and what it is vibrating into, there is less energy transfer. To a mechanical engineer, the concept is "mechanical impedence". It is a differennt concept than electrical impedence to an electrical engineer. What happens to the energy which is not dissipated out of the component? Well, that's part of the job of the component's designer. For a speaker, the energy might be channelled and directed out of a speaker port. Or it might be damped by stuffing in the speaker. For an electronic component, the chassis might be damped with a compound to minimize metal chassis "ringing". Just as the cones or spikes keep energy from the component from going out, the impedence mismatch also prevents vibrations from the environment from coming in (excluding air borne vibration).

No spike or cone is perfect. Some energy will get through. Now you can use the second technique. Take the energy which vacates the component and convert it to a non-audible form (eg. heat, or shift it to a different frequency). The laws of thermodynamics state that energy cannot be created or destroyed; it is only converted into something else.

One thing you can do is to couple the component to something massive. A small vibration in a large mass will be more easily damped. If you put an amp on a massive stand, (such as metal filled with sand, or on a granite slab), the vibration can be dissipated in the stand. Because the vibration is relatively small, it is less likely to vibrate the stand and it will likely be converted into heat and dissipate. Coupling a speaker to the floor or wall allows the speaker to be coupled to something massive.

Unfortunately, mass is not the only variable. All matter will resonate at some frequencies. If the transferred energy causes the mass to resonate, the resonance could be audible, or come back into the component. Here is the problem with wood. It resonates. That's why violins and acoustic instruments are made of wood.

If you can couple to a concrete floor, you can get damping from mass without audible resonances. If you couple to wood, you get less mass, therefore less damping, plus you are likely to get audible resonances. Coupling to wood structures and not getting resonances is extremely difficult. It's not impossible, but it's hard to do unless the vibrations are small. Turntables can be coupled to walls with a wall mount turntable stand, but a speaker simply produces too much vibration. It's luck (and construction) more than anything else if it happens to work for your speakers. And it doesn't prevent structural vibrations (footsteps for example) from going back into the speaker. After all, the vibrations go in both directions) Decoupling with spikes is more likely to be effective for speakers than coupling. It doesn't connect you to resonant wood, and it makes it harder for environmental vibrations to travel into the speaker.

Remember that you can use both.

Put an electronic component on cones or spikes and it helps to prevent vibration from entering the rack and vice versa. If vibration does enter the rack, use a heavy, massive rack that is non-resonant at audible frequencies so that the energy that does escape through the spikes is damped. Now put the rack on spikes so that energy in the rack doesn't escape into the resonant floor and so that resonant energy doesn't come up into the rack. Put the rack on a granite slab so that energy from the rack is dissipated by the mass of the non-resonant slab. Put the slab on spikes so energy from the slab doesn't go into the floor and resonate, and so that floor energy doesn't come into the slab. This is an extreme example, You take it as far as you want given your budget and your evaluation of whether it's cost effective or not in terms of audibility. The point is that it's a series of decoupling techniques that limit energy transfer, combined with coupling to massive, non-resonant objects to damp the energy that does escape.

It's the same thing with speakers if you choose to couple, only instead of a massive rack, you're using a massive house structure.

Put speakers on spikes to decouple. This helps to keep the energy in the speaker where it is damped in the speaker by the cabinet or stuffing. The spikes also limit energy coming into the speaker from the outer environment. In addition, the spikes also keep the speaker energy from energizing the resonant floor.

Because electronic component vibration is small, coupling to a massive, non-resonant rack is a good way to go, especially since you need a rack anyway to hold the gear. You can then add cones as a final tweak if you think that it makes a difference for whatever miniscule vibrations which are left, or if there are environmental vibrations coming into the rack and then into the component(or put spikes on the rack)

For speakers, the amount of vibration is so large, the only thing massive enough to couple to for damping is your house. But if your house is wood, coupling is a problem because of the resonant wood. So the more efficient approach for speakers is to decouple with spikes.

So for reasons of practicality, tame component resonances by coupling to massive, non-resonant racks and tweak with cones; tame speaker resonances by decoupling with spikes.
Gammajo, you can decouple using anything. It is the small surface area that makes spikes good as this is what increases the mechanical impedence. If you use a product with a larger surface area, you will get less impedence and more energy transfer. How much less, and whether it is audible would have to be the subject of further debate add experimentation. I don't quite know what to make of little rubbery decouplers like isobearings or pucks. With a larger surface area compared to spikes, they are not as efficient as decouplers. On the other hand, if they wiggle a bit, the movement may damp vibrations. So you may be losing a little bit of decoupling, but gaining a little bit of damping. Remember that isolation and coupling can both do the same thing. I really don't know how to answer the questions in your latter post. We're pretty close to my limits of knowledge on this particular subject. I was hoping that the Bright_star_audio person who posted might kick in a few words. Bright Star make reputable products and should be able to add some insight. Sorry I can't help further.