Hi Everyone,
I updated the measurement list on my website "Downloads" page to include additional samples of the JJ 5751, and also an additional tube type, the JJ ECC99.
http://tavishdesign.com/pages/downloads
The JJ 5751 continues to be one of the most consistent and low-noise tubes in my study. But I’ve noticed that as more tubes are measured, the average input-referred noise tends to rise. This is true for all tube types, and it is because as more tubes are measured, it is more likely to get a high noise tube that raises the average. The noise distribution is actually not Gaussian – while there seems to be a lower limit for the noise of a given type, there is no upper limit, so there is a tighter distribution on the low side of the average and a wider distribution on the high side of the average. In the future, I may begin reporting the median as well as the average for each type.
The ECC99 is a high transconductance tube that I believe was originally intended for RF applications. I’ve experimented with it as a driver tube for my hybrid amplifier, but had not considered it as a low noise tube until Lewm on this forum suggested it to me. The ECC99 has transconductance comparable to an ECC88, but without the extremely tight electrode spacing or wide bandwidth.
I’ve only measured 4 samples of the ECC99 so far, but it seems promising. The average input-referred noise of 0.711 µV RMS puts it in the middle of my list, and I intend to measure more. One of the 4 samples had “popcorn” noise and was discarded.
Scott
I updated the measurement list on my website "Downloads" page to include additional samples of the JJ 5751, and also an additional tube type, the JJ ECC99.
http://tavishdesign.com/pages/downloads
The JJ 5751 continues to be one of the most consistent and low-noise tubes in my study. But I’ve noticed that as more tubes are measured, the average input-referred noise tends to rise. This is true for all tube types, and it is because as more tubes are measured, it is more likely to get a high noise tube that raises the average. The noise distribution is actually not Gaussian – while there seems to be a lower limit for the noise of a given type, there is no upper limit, so there is a tighter distribution on the low side of the average and a wider distribution on the high side of the average. In the future, I may begin reporting the median as well as the average for each type.
The ECC99 is a high transconductance tube that I believe was originally intended for RF applications. I’ve experimented with it as a driver tube for my hybrid amplifier, but had not considered it as a low noise tube until Lewm on this forum suggested it to me. The ECC99 has transconductance comparable to an ECC88, but without the extremely tight electrode spacing or wide bandwidth.
I’ve only measured 4 samples of the ECC99 so far, but it seems promising. The average input-referred noise of 0.711 µV RMS puts it in the middle of my list, and I intend to measure more. One of the 4 samples had “popcorn” noise and was discarded.
Scott