Hagerman Piccolo Zero: New transimpedance head amp


I recently received my brand new (recently released) Piccolo Zero "transimpedance" MC head amplifier. Its sounds awesome! And it already completes for my favor with some good SUT’s - and perhaps more. Pretty certain I already prefer it to voltage-mode JFET head amps. Jim Hagerman commented he might not prefer this head amp for (say) Earth Wind and Fire, but thus far I find no need to qualify its performance by genre or complexity of music. For $250, this product is simply awesome. Maybe all the folks here raving about this transimpedance approach, and eschewing SUTs (Raul), were correct after all 😅

BUT, how to make sense of Piccolo Zero’s specified "gain" ratings? And how to predict matching to a given cartridge? The manual states the following gain levels:

  • 83uV/uA (0dB)
  • 133uV/uA (+4dB) - EDIT: my unit actually shipped with this level pre-selected, not +6. The internal switches are tiny and very confusing!
  • 166uV/uA (+6dB)
  • 332uV/uA (+12dB)

Those +db number are not "absolute gain" values. They’re gain relative to the (0dB) base level’s 83uV/uA sensitivity (read that as: 83 micro-volts output for every 1 micro-ampere input). The actual gain must be calculated against the actual current generated by a given cartridge. So how to do THAT? I can guess to start with the basic kiddie equation:

V = I * R

And let’s start with a "typical" MC example: Koetsu Platinum (any stone) at 300uV output for 5ohm DC coils (for simplicity, we’ll ignore the inductive component of impedance). Then:

300uV = I * (5ohms + Rp)

Where Rp is the input resistance of the Piccolo Zero. It "should" be close to 0, but I can’t find Hagerman’s specification. Perhaps 1 ohm or less? This value becomes more important for ultra-low impedance coils (e.g. My Sonic Labs cartridges, Benz Ebony TR, some vintage Ortofon MC’s). For now we’ll conveniently ignore it and assume 0 ohms :)

300uV = I * (5ohms + 0) => I = 60uA

So 5 ohm coils gives us 60 micro-amperes. Note that the generated current is always going to be inversely proportional to the coil ohms (plus the input resistance we ignored)! Also note that we can simply multiply this current value against each gain level’s listed sensitivity. So for the 83uV/uA (0dB) level, we get:

83uV/uA*60uA = 4,980uV ~= 5mV

Wow! That’s right on the money for what signal level you want hitting the MM phono stage. We can also easily calculate the traditional voltage gain of this transformation:

4980uV / 300uV = 16.6x (step-up ratio) = 24.4dB

And it follows that the 166uV/uA (+6dB) level yields:

166uV/uA*60uA = 9,960uV ~= 10mV
4980uV / 300uV = 33x (step-up ratio) = 30.4dB

It’s interesting to note that the highest 332V/uA (+12dB) level yields a whopping 66x step-up ratio for 36.4dB of gain! It seems you can very easily push into some MASSIVE voltage gains, given a cartridge with ultra-low impedance coils. In those scenarios, one must exercise caution to not overload a downstream MM stage.

Furthermore, the above calculation can be generalized quite simply:

Voltage gain (ratio) = Sp(uV/uA) * (Vc / Rc(ohms)) / Vc = Sp(uV/uA) / Rc(ohms)

Where Sp is the sensitivity of a given gain level, Vc is the rated output voltage of a cartridge, Rc is the DC ohms of the cartridge coils. The cartridge output voltage cancels itself, and we’re left with:

Voltage gain (ratio) = Sp(uV/uA) / Rc(ohms)

So basically, we just take a given cartridge’s DC ohms and divide it into a sensitivity for a given gain level. That’s our net voltage gain ratio. Super easy :)

For clarity, here’s the full lineup of gain levels for our Koetsu Platinum:

  • 0db level => 83 / 5 = 17x step-up ratio = 24dB gain
  • +4dB level => 27x = 28dB gain
  • +6dB level => 33x = 30dB gain
  • +12dB level => 66x = 36dB gain

Clearly, one should stick to the 0dB or +4dB levels on a Koetsu. I can verify the +4dB level with Blue Lace sounds awesome :)

Now let’s look at the Van den Hul Crimson XGW Stradivarius, with 0.65mV from 12 ohm coils:

  • 0db level => 83 / 12 = 7x step-up ratio = 17dB gain
  • +4dB level => 11x = 21dB gain
  • +6dB level => 14x = 23dB gain
  • +12dB level => 28x = 29dB gain

That works out pretty well! I’ve also tried out this combo, and it sounds awesome. These numbers roughly gel with what I’m hearing versus a SUT. The +4dB level also works very nicely here, perhaps helped by the fact this VdH’s output seems weaker than its rating, relative to other brand cartridges rated 0.4mV - 0.8mV.

Now let’s look at the Van den Hul Colibri XGW Stradivarius, with 0.38mV from 36 ohm coils (we lose much output from the monopole design):

  • 0db level => 83 / 36 = 2.3x step-up ratio = 7dB gain
  • +4dB level => 3.7x = 11dB gain
  • +6dB level => 4.6x = 13dB gain
  • +12dB level => 9x = 19dB gain

At this point, we’re clearly struggling to achieve enough gain from those 36 ohm coils. However, the +12dB level should still be sufficient. I listened to this briefly, and indeed found its output level to be significantly lower than that of a 15x - 30x SUT. However I do not favor this combination yet - I’ll have to give it another shot later. The SUT or voltage mode approaches may have the clear advantage here, due to 36 ohm coils. EDIT: I had the internal gain level switch positions confused. They are very tiny and confusing! I was initially hearing the Colibri at 0dB level when I thought it was +12dB lol no wonder it sucked. I'll try the real +12dB shortly.

And finally, let’s look at a My Sonic Labs cartridge. I dunno, Eminent Ex? This cartridge wasn’t my jam (*I no longer have it on hand for testing here), but serves as a good example of an MSL configuration. 0.4mV from 0.9 ohm coils:

  • 0db level => 92x step-up ratio = 39dB gain

That’s crazy. And it only gets more ludicrous above that. So clearly the head amp’s input impedance is important at this point. If we assume 1 ohm, this drops to an almost reasonable 44x step-up ratio. Still way too much for 0.4mV, but it would be serviceable. Anyways, that begs the question: are My Sonic Labs cartridges "too much" for a transimpedance stage? Does such a head amp need special accommodation for these cartridges (i.e. a much lower gain level for MSL)? The Benz Ebony TR and vintage Ortofons (e.g. MC20, MC2000) don’t face this problem, because their output levels are lower in proportion with their coils.

** I’ve used the Piccolo Zero with two fairly high-end standalone phono stages, so far: VAC Renaissance SE and Hagerman Trumpet Reference. Both have a tube-based MM stage (6x 12AX7 in the VAC and 4x 12AX7 plus 4x 12AU7 in the Trumpet), and I’m bypassing their own internal MC stages. Results with both have been equally exceptional.

** Please note I’m not posing the above as any kind of authoritative analysis. This is just me, an analog hobbyist, trying to get a better handle on this product. Please help improve my understanding if you have corrections or insights to share!

mulveling

Quadratic SUT 

I spoke with the MC-1’s designer once, and he advised lifting VTA slightly to counteract this.

This disqualifies this designer for me because there is only one correct VTA position. To use VTA as a tone control is wrong, and could well result in record groove damage - particularly with modern stylus profiles which are very close to the cutter head in shape.

Once the current has been converted to voltage, the signal must be handled as voltage because all the downstream components are voltage driven. That’s why I suggested that the Piccolo Zero might be identical to the original Piccolo, after current is converted to voltage at the input. If you own both, check the innards of the Zero compared to the original Piccolo.

and what do you mean by “magnetic efficiency “?

Once the current has been converted to voltage, the signal must be handled as voltage because all the downstream components are voltage driven. That’s why I suggested that the Piccolo Zero might be identical to the original Piccolo, after current is converted to voltage at the input. If you own both, check the innards of the Zero compared to the original Piccolo.

@lewm  The Zero has nothing in common with traditional Piccolos. Jim issues circuit schematics in most of his manuals. Zero’s circuit shows an opamp (2ch opamp) with feedback (R4) as the only active component. It’s effective enough at converting amps to volts that it doesn’t require an additional voltage amplification stage. Piccolo MC’s manual doesn’t include the schematic but you can find his "normal" Piccolo circuit in the Trumpet MC manual, sheet 4/5. It shows two JFET devices (LSK389B) per channel, which are also visible in pics of the Piccolo MC board.

and what do you mean by “magnetic efficiency “?

The ratio of a cartridge’s output voltage over its coil DC ohms, as per the post topic. No it’s not literally an "efficiency", which must be a percentage. Its unit would be amperes. My assertion was that this ratio is directly proportional to how much equivalent voltage gain you net from the Zero. Jim has previously stated the input impedance of Zero is less that 0.1 ohms, so that would not be a significant factor in the calculation. Tonearm cable could be more of a factor, if you choose an awful one (too long). 

The Quadratic SUT is a good one, but it’s definitely a little tilted in favor of bass frequencies, and a little relaxed / recessed up top. Just depends on your setup, how well that works.

@mulveling - thank you for your always thoughtful and illuminating responses.  I have similar observations to yours with the Quadratic.  As much as I enjoy and recognize the quality of Quadratic, my system has pretty robust bass as is (McIntosh MA352 integrated amplifier, Sonus Faber floorstanding speakers) so the combo is causing me to reconsider the transimpedance approach. It would be either the Zero (or a Sutherland SUTZ if there’s a compelling reason, although the the Zero seems hard to pass up), or moving to an EAR MC4 SUT, which also seems to be one you are very familiar with. If you’re willing, it’d be great to have your thoughts on the MC4 in relation to the Zero or transimpedance generally.

Thank you for all the great comments. One parameter so far overlooked is inductance. The ratio of cartridge inductance to resistance is what determines if a cartridge is suitable for transimpedance operation. I did make a web page for this. Go down to the Transimpedance Phonostages section...

https://www.hagtech.com/loading.html

If inductance is too great, bandwidth will be compromised. This will be true for whatever TI phono you use.