One of the major advantages of the first-order crossover, which isn't mentioned often enough, is the fundamental simplicity of the network. Every increase in crossover order is accompanied by a proportional increase in the number of network elements, and the audibility of this problem is severe. Even a single high-quality inductor or capacitor in the signal path is audibly degrading when compared to none at all, which is why so many people decide to live with the severe compromises present in single-driver speakers. It's hard to describe this effect until you play around with it-- my best description is that it "sucks the life out of the music". And the higher the slope, the worse this problem gets. Not very scientific, I agree, but the degree to which this is true is stunning when you hear it.
Also, I would take issue with the research quoted by Joseph. One of the basic facts about second-order crossovers is that they require at least one of the drivers to operate in inverted electrical phase, to avoid a null in frequency response at the crossover frequency. This inversion alone is enough to utterly destroy the integrity of the musical signal, and any comparisons to fourth-order crossovers at that point are completely meaningless. Since no one in their right mind would use second-order networks in the first place, it doesn't say much that fourth-order sounds better than second-order. This paper, like a lot of quoted research, might be true in its own limited environment, but it doesn't even begin to tell the whole story in the real world.
The main drawback to first-order networks, as stated above, is the need for very wide bandwidth and very high quality drivers, with no severe "breakup modes". Thankfully, these are available at a price from Scan Speak and Audio Technology, among others.
Disclaimer: I am the manufacturer of the Ultimate Monitor, a two-way speaker using first-order series crossovers and Scan Speak Revelator drivers.
Best,
Karl
Also, I would take issue with the research quoted by Joseph. One of the basic facts about second-order crossovers is that they require at least one of the drivers to operate in inverted electrical phase, to avoid a null in frequency response at the crossover frequency. This inversion alone is enough to utterly destroy the integrity of the musical signal, and any comparisons to fourth-order crossovers at that point are completely meaningless. Since no one in their right mind would use second-order networks in the first place, it doesn't say much that fourth-order sounds better than second-order. This paper, like a lot of quoted research, might be true in its own limited environment, but it doesn't even begin to tell the whole story in the real world.
The main drawback to first-order networks, as stated above, is the need for very wide bandwidth and very high quality drivers, with no severe "breakup modes". Thankfully, these are available at a price from Scan Speak and Audio Technology, among others.
Disclaimer: I am the manufacturer of the Ultimate Monitor, a two-way speaker using first-order series crossovers and Scan Speak Revelator drivers.
Best,
Karl