It’s more about power, because you can’t see the forest for the trees, with what Mark Levinson tried to do by series up "low order" output filters (so they don’t burn out) and trying to get a steeper roll off as not to introduce phase shift into the audio band in the upper mid/highs, which they achieved, but it had then other problemsThis comment really says you don't understand what's going on here. ML didn't do what you're describing. Its obvious from the internal photos that the circuit employs what is known as an 'H' bridge output (which tends to be common in higher powered class D amps). Its also common to see two chokes as a result- one for each half of the bridge circuit. Without knowing further details of the circuit its unwise to speculate further, but the fact of the amp being an H bridge is easy to see if you know what to look for.
The waveform at the link is a 10KHz squarewave. There is a small amount of overshoot, and what looks like a bit of an oscillation on top of the waveform as it is consistent with each iteration so does not appear to be a measurement error. As square waves go, that's not a bad looking one- most power amps will round the leading edge (if open loop/zero feedback you need 100KHz bandwidth to make that leading edge look right).
So I don't see the 'other problems' to which you referred by including that link. I might add though that more modern class D amps do make a better showing of this sort of thing. When you attack a technology based on older examples, it really doesn't help your argument!