Why does a Music Server require high processing CPU power?


I noticed that some music servers use, for example, a dual multicore CPU’s running under a custom assembled operating system.  In addition, the server is powered by a linear power supply with choke regulation and a large capacitor bank utilizing the highest audiophile grade capacitors.  Various other music servers have similar high CPU processing capabilities.  

I know that music is played in real-time so there is not much time to do any large amounts of processing.  I also know that the data stream needs to free of jitter and all other forms of extra noise and distortion.   I believe that inputs and outputs are happening at the same time (I think).

I also know that Music Servers needs to support File Formats of FLAC, ALAC, WAV, AIFF, MP3, AAC, OGG, WMA, WMA-L, DSF, DFF, Native Sampling Rates of 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz, 352.8kHz, 384kHz, 705.6kHz, and 768kHz and DSD formats of DSD64, DSD128, DSD256 and DSD512 including Bit Depths of 16 and 24.  

Why does a music server require high processing power?   Does the list above of supported formats etc. require high processing power?  Assuming the Music Server is not a DAC, or a pre-amp, what is going on that requires this much processing power?   

What processing is going on in a music server?  How much processing power does a music server require?  

Am I missing something?   Thanks.   


hgeifman

Showing 9 responses by djones51

The only reason I can think of is if you're doing heavy digital processing. 
I have no idea why anyone would need dual Xeon processors and 48GB of memory in a home music server. 
I  assembled my own NUC Rock with an i5 and stream Quboz and my ripped CDs through it. I agree it's the best sound quality I've had as well. I've messed with some of the DSP settings and upsampling but I always end up back at original settings. 
 If you're using roon and have a lot of CDs ripped to a hard drive and use Roons upsampling and digital filters they reccomend at least an i5 or i7 or compatible. The notion of dual Xeons and 48gigs of RAM escapes me unless you're doing a lot more than hosting a home based music server. Most dedicated streamers like a Node2i do fine with ARM processors. 
To get back to the OPs question there is nothing going on in a dedicated  home based music server to necessitate the need for dual 20 core Xeon processors and 48 GB of ram unless you're starting your own streaming service. A NAS can run a music server perhaps not Roon but Plex or something similar. 
.
Or, are there other processes going on in the streamer that requires high processing power? If yes, what are they? Thank you very much
There’s nothing going on that requires what we would consider in today’s times as high processing power. I use a raspberry pi4 as a roon bridge from an NUC Roon server none of this uses high processing power. Nothing in a basic home server client relationship requires the kind of processing you’ve been talking about, Dual Xeons and megagigs of memory.
I believe Compression was an answer in the 1980's when CPU power and storage space was at a premium. I think the bottle neck now is bandwidth. I could just as easily store and stream uncompressed wav on a home network but compression is still advantageous over the internet. CPU'S have been fast enough to deal with audio compression for a long time now. 
Let us assume an AIFF Coded album.   What exactly is involved in preparing the AIFF Album file (or any of the other formats) for inputting to the DAC and does this require large amounts of processing power (probably yes)

Think of audio compression like a zip file, it's already been compressed the codec uncompresses then software and other firmware in the device send it on to the DAC. Unless some sort of manipulation of the file is being done like upsampling or EQ it's not a very CPU intense operation. 
Maybe I was mistaken but I though we were talking about a basic home music server not enterprise solutions. You can use a few years old computer, NAS a raspberry pi4 with a hard drive attached to set up a music server for home use. 40 cores of Xeon processors and 48 gigs of ram is a good start on an enterprise SQL database for a mid sized company.