Why are low impedance speakers harder to drive than high impedance speakers


I don't understand the electrical reason for this. I look at it from a mechanical point of view. If I have a spring that is of less resistance, and push it with my hand, it takes little effort, and I am not working hard to push it. When I have a stiffer spring (higher resistance)  I have to work harder to push it. This is inversely proportional when we are looking at amplifier/speaker values.

So, when I look at a speaker with an 8 ohm rating, it is easier to drive than a speaker with a 4 ohm load. This does not make sense to me, although I know it to be true. I have yet been able to have it explained to me that makes it clear.  Can someone explain this to me in a manner that does not require an EE degree?

Thanks

crazyeddy

Showing 1 response by larry5729

To me it seems like if you need twice the amount of electrons to flow to a 4 ohm speaker than to an 8 ohm speaker, the amplifiers would need to work harder and in return wouldn't this cause more distortion?  Also, if it takes twice the amount of current to drive a 4 ohm vs an 8 ohm speaker, wouldn't this mean the 4 ohm speaker is less efficient.  However, you would think the 8 ohm speaker would be less efficient because it has twice the amount of resistance to the current.

I was told once a 4 ohm speaker requires twice the amount of current than an 8 ohm speaker.  Because a 4 ohm amplifier delivers twice the amount of current, would this in turn supply twice the amount of information to the speaker to create more detail in the music?