Tube Amps and Friendly Speakers - Back Impedance


The issue of tube amp friendly speakers has been taken apart on the Forum. However, I have another tube amp/speaker compatibility question that I hope will attract the attention of our tech oriented members, especially those members who manufacture speakers or amps. As I will explain below, the question relates to what I call "back impedance." Although this OP is longer than I would have wanted, the subject is complicated. Please accept my apologies. In the end, I'm not sure there is a best answer or practical advice. But here goes.

First a warm-up. I think many tech oriented members, such as Ralph (Atmasphere), Duke (Audiokinesis) and Al (Almarg) to name a few, have written extensively about Voltage and Power Paradigm amps, and how these amps produce current and power when presented with varying speaker impedances that change as a function of frequency.

Very generally, Voltage Paradigm amp (i.e., usually SS amps) usually maintain constant voltage and as a result produce more current, and correlatively more power (i.e., watts), when speaker impedance drops. However, SS amps produce less current and correlatively less power as impedance increases. By contrast, Power Paradigm amps (i.e., usually tube amps) tend to produce constant power as speaker impedance changes. The Atmasphere White Paper on the so-called Voltage and Power Paradigms contains a much more cogent and comprehensive discussion of the highly simplified points in this paragraph.

Second, a tube amp twist. Our tech members have explained at great length that SS amps usually have very low output impedances. This characteristic goes hand-in-hand with high damping factors (DF) and the Voltage Paradigm attribute of SS amps being constant voltage sources.

Third, the tube amp twist is that some tube amps use negative feedback of various types which has the effect of lowering output impedance and raising DF. In short, this design attribute enables a tube amp to perform somewhat solid state-like. That is, this class of tube amps is able to produce output voltages that don't vary very much as speaker impedance changes as a function of frequency.

As a case in point, my tube amp, the ARC Ref 150, has 3 different output taps (4, 8 and 16 ohms), each of which has a different output impedance: 4 ohm tap -- +/- .4 db; 8 ohm tap -- +/- .8 db; and 16 ohm tap -- +/- 1.4 db. Take a look at John Atkinson's 2012 bench test measurements of the Ref 150 to get a better sense for how it performs when presented with a simulated speaker load -- Graph 1 in particular.

Now to the back impedance question. And let me caveat my question by saying that it applies to tube amps that use output transformers -- not OTL amps like Atmasphere amps. In addition, I am thinking about tube amps that have low output impedance.

As I mentioned above, this issue has been discussed before, but I'm not sure sufficiently so. I say this because without knowing more, I would have jumped to the conclusion that a tube amp that has a low output impedance tap like the Ref 150 should perform sufficiently "SS like" so that it could drive speakers that were voiced to be driven by solid state amps. In fact, if the 4 ohm tap produces the lowest output impedance, just use it regardless of the speaker's impedance characteristics (nominal or varying). Not so fast ...

As I also mentioned, the Ref 150, like many tube amps has 3 output taps (4, 8 and 16) that are intended to correspond to the nominal impedance of the speaker. The theory is that the amp and speakers will perform better if there's a good impedance match between the two components. Great! What the heck does that mean and how does it impact performance??

The explanations I read on some of the older Forum posts seems to go like this. One of the key functions of output transformers is to match the impedance load of the speakers to the optimal operating range of a tube amp's output tubes. So, in a crazy way that I still don't understand yet, an output tranny works two ways -- (1) it steps-down the output tubes' plate voltage and high impedance to match the speakers, and at the same time (2) it steps up the impedance loading presented to the output tubes through the interaction of the tranny's primary and secondary windings (or, back impedance). In the latter case, the impedance step-up relates to the speaker's impedance presented to the tranny's secondary windings.

So, if I got this halfway correct, the inference that one should always hook his/her speakers up to the 4 ohm tap just because it generally presents the lowest output impedance to the speakers is flawed. The fallacy is that blindly using the 4 ohm tap may not result in an optimal impedance match for the output tubes.

And I think our tech members mentioned that if the output tubes are presented with a stepped up impedance that is outside the optimal design range of the output tubes, the result could be higher distortion and/or loss of power delivery capability at a given frequency as a function of the speaker's impedance characteristics at that frequency. Perhaps that's why the sage advice of using the tap that sounds best keeps cropping up. There's a lot of variables in play that affect what's comes out of the business end of a speaker, e.g., DF, output voltage regulation, power delivery and distortion, all changing as a function of frequency.

Ok, so using a low impedance tap doesn't solve all the problems with varying speaker impedances. Then, is it practical to know how much variation in a particular speaker's impedance viz-a-viz the amp's output tap impedance can be tolerated to be assured that the back impedance presented to the output tubes is in the tubes' operating sweet spot. Stated differently, if one plugs a speaker having a nominal impedance of 8 ohms into the amp's 8 ohm tap, how much can the speaker's impedance vary, yet still maintain optimal back impedance presented to the output tubes by the output transformer. Plus or minus 2 ohms ??, 4 ohms ??, etc.

If the practical answer is not more than 4 ohms total variation (or -/+ 2 ohms), then that's one heck of a pretty flat speaker by any accounts. So, my hypothetical speaker's impedance should not be greater than 10 ohms or less than 6 ohms or else the amp's output tubes will be operating outside their sweet spot, possibly producing more distortion or less power than predicted, especially if driven hard (e.g., at high gain, especially in the bass region).

So, in summary: is it practical to know how much variation in a particular speaker's impedance viz-a-viz the amp's output tap impedance can be tolerated to be assured that the back impedance presented to the output tube is in the tube's sweet spot? And that is the question!

P.S. I apologize for any typos. Just had eye surgery and my vision is still coming back.
bifwynne

Showing 8 responses by almarg

Alan, note that Bruce's question, as summarized in the last paragraph of his post before the P.S., is not about predicting which tap will be best. The question is if a generally applicable guideline can be defined for the maximum amount of variation of speaker impedance as a function of frequency that can be tolerated before it becomes likely that no tap can be chosen which will allow many tube amplifiers to perform at their best.

The question basically relates to speaker selection, given that the intention is to use a tube-based amplifier having an output transformer.

I don't have a good enough quantitative feel for the variables that are involved to suggest an answer, and it might be that too many variables are involved for a useful answer to be defined. But hopefully Ralph, Duke, etc. will shed some further light on the question.

Regards,
-- Al
Bruce, I'd imagine there would be some situations in which doing that would provide results that are subjectively preferable. But keep in mind that as indicated in the article the output voltage of the 8 ohm tap is higher than the output voltage of the 4 ohm tap, by up to about 3 db depending on the impedances that are involved, and the output voltage of the 16 ohm tap is higher than the output voltage of the 8 ohm tap by a similar amount.

It's safe to assume that commercially made integrated speakers are not designed to be driven that way, and so doing that would result in an unintended brighter tonal balance.

It's a good question, however, so no lashes are warranted :-)

Best regards,
-- Al
I couldn't send along ARC's drawing, but it illustrates hooking the speaker's low end terminal up to the 0 (-) and 4 (+) ohm taps; and the high end terminal to the 4 (-) and 16 (+) Ohm taps.
Hi Bruce,

That suggestion is actually the same as in the first figure of the Vinylsavor paper you had linked to earlier. See that figure and the two paragraphs of the paper which are just above it. That arrangement should function well, and will provide proper phasing and level matching. In terms of impedance matching and output levels, from the perspective of the output tubes and from the perspective of the speaker it would be similar to connecting both sections of the speaker to the 4 ohm tap. I don't know whether or not it would be likely to provide any benefit in terms of the performance of the transformer itself.

Best regards,
-- Al
Well said, Bruce. And it seems to me to be safe to assume that the reason a lot of audiophiles find themselves on an amplifier merry-go-round at times is not that there is anything inferior about the amplifiers they've tried, it's just that the impedance characteristics of the speakers make amplifier selection excessively critical.

But hey, there are exceptions. My Daedalus Ulysses, for example, would be suitable matches for just about any amplifier known to mankind, except for the really flea-powered types. They are something like 6 +/- 1 ohm at all frequencies above 100 Hz, with a gradual rise to around 10 ohms at 20 Hz. And with benign phase angles, high efficiency, and high power handling capability. The 6 ohm nominal impedance, also, happens to be a perfect match for one of my amp's three output taps, which is indicated as being for 4 to 8 ohm loads.

And as I indicated in your thread about auditioning speakers, Daedalus provides 30-day return privileges, less two-way shipping and $300.

Best,
-- Al
Bruce, enjoy!

I have several minor corrections and clarifications to most of the recent posts, though (excluding Ralph's, of course!).
10-30-13: Bifwynne
LT: The zero tap goes to the neg. terminal and the 4 ohm tap feeds the hot. If I've got that right, the amp's output impedance with the LT configuration is 4 ohms, which matches the LT woofer and lower midrange impedance ...
As I believe you realize, the output impedance of the 4 ohm tap of your amp (and that of most other tube amps, aside mainly from some OTL's and SETs) is much less than 4 ohms. It would be more correct to say that the load impedance that the tap is designed to drive or work into is 4 ohms.
UT: The 4 ohm tap is split wire, so I'm using the other head of the 4 ohm bi-wire to feed the negative terminal. Then, I'm running Tom's single cable off the 16 ohm tap to the hot. If I've got this right, the amp's output impedance on the UT configuration is 8 ohms.... An important point is that the amp's voltage gain off the 4 ohm taps is about 2.5 db less than off the 8 ohm taps. As a result, the speakers may be a tad bright.

10-31-13: F1a
Is the UT impedance really 8 ohms? Would it not be 12 - the difference between 16 and 4 ohm taps?? If so, the gain may even be higher than 2.5 dB.
Both statements are not correct. The load impedance that from the perspective of the amplifier is optimal for connection between the 4 ohm and 16 ohm taps is 4 ohms. As indicated in the paper Bruce referenced earlier, when 4, 8, and 16 ohm taps are provided the 4 ohm tap will normally be the center tap of the secondary winding of the transformer, with an equal number of turns "above" and "below" that point. That follows from the fact that transformers transform impedances in proportion to the square of the turns ratio. Presumably the transformer is designed such that a 4 ohm load connected between the common (negative or black) terminal and the 4 ohm tap will present the same impedance to the output tubes as when a 16 ohm load is connected between the common terminal and the 16 ohm tap. Therefore the number of secondary windings between the common terminal and the 16 ohm tap will be twice the number of windings between the common terminal and the 4 ohm tap. Therefore the number of secondary windings between the 4 and 16 ohm taps will be the same as the number of windings between the common terminal and the 4 ohm tap.
11-01-13: Minorl
"However, SS amps produce less current and correlatively less power as impedance increases."
Very interesting post. I'm enjoying the interactions. However one clarification. Your statement in quotes above is really not correct. For well designed solid state amplifiers with well designed power supplies, this statement is not accurate. Not starting a tube vs solid state conversation, just a clarification.
I don't see anything wrong with Bruce's statement, Minorl. As I'm sure you realize, almost all solid state amps have output impedances that are close to zero (i.e., a very small fraction of 1 ohm). Therefore, as a consequence of Ohm's Law and assuming that the amp is operated within the limits of its voltage, current, power, and thermal capabilities, the higher the load impedance the less current and power it will deliver, while delivering essentially constant voltage as load impedance varies. Power supply robustness will increase the CAPABILITIES of the amp under demanding conditions (especially into LOW impedances, and difficult impedance phase angles), and hopefully improve its sonics under most conditions.

Best regards,
-- Al
11-01-13: Minorl
... really good amps double their power output when the load impedance is reduced in half.
And conversely, those amps halve their power output when the load impedance is doubled. Please re-read Bruce's statement, which refers to load impedance INCREASING.

Also, it is important to distinguish between how an amplifier's MAXIMUM power capability varies as a function of load impedance, and how its power delivery varies as a function of load impedance when it is operated WITHIN its maximum capabilities, whatever they may be. It is the latter that is being discussed, NOT variation of MAXIMUM power capability as a function of load impedance.

For a given input signal level, ANY amplifier having near zero output impedance, such as most solid state amplifiers, WILL double power delivery into a halved load impedance, as long as it is operated within the limits of its voltage, current, power, and thermal capabilities. And conversely, its power delivery into a doubled load impedance will be cut in half. Those are simply consequences of Ohm's Law.

That is all consistent with Bruce's original statement, as well as with Ohm's Law. I'm surprised that you disagree. I suspect that you've misread what has been said.

Regards,
-- Al
11-01-13: Unsound
Ss amps will more often than not provide a more linear frequency response whether the impedance increases or decreases.
True, fundamentally because the majority of speakers are designed with the expectation that they will be used with solid state amplifiers. Meaning that they conform to what Ralph refers to as voltage paradigm principles.

Best regards,
-- Al
F1a & Bruce, I concur with everything in your latest posts.

Best regards,
-- Al