The Physics of Electricity


Can anyone explain clearly in either common parlance or technical terms the difference between a $1,000.00 cable and/or speaker wire versus a $20.00 (or so) one? What does wire "do" in an expensive cable/wire that an inexpensive cable/wire does not? Does it conduct more or "better" electricity?
llanger

Showing 22 responses by geoffkait

Good catch. I didn’t necessarily mean my list was all inclusive. Shielding geometries, active cables, damping, magic boxes, all sorts of special innovations by various manufacturers pop up. My list is a good place to start. 🤗 Actually, the case could be made for LACK of complex geometry being a valued characteristic, e.g., Anti Cables.
Let’s briefly recap why expensive cables might be better than some stock run-of-the-mill cables.

High purity copper or silver
Gold content
Long grain copper conductors
High performance dielectric material
Advanced welding techniques for connectors
High silver content of connectors
Highly polished solid core conductor surfaces
Conductors controlled for directionality
Conductors and connectors are cryogenically treated
White jackets in lieu of black or color

Actually the original post (The Physics of Electricity) asked, what makes an expensive cable better than an inexpensive one, does one “conduct more or better electricity?” The mention of Vibrations came later on. Plus there’s another similar thread that asked the burning question, do vibrations affect inert electronics like solid state amps.

In any event, my pop quiz was do external vibrations affect the signal in cables and if so how? It’s very similar to the question why do external vibrations affect solid state amps? I’m going to help you out. What is needed is to first establish what the audio signal in wires and cables actually is and how vibrations could physically or electrically affect it.
Those 2 links provide good info, unfortunately nothing that answers my pop quiz question that concerns vibration in cables. The first article is not relevant to vibration in audio systems actually. The subject of the first article is electromagnetically excited acoustic noise, which is a horse of a different color.

To whit,

“Electromagnetically excited acoustic noise is audible sound directly produced by materials vibrating under the excitation of electromagnetic forces. Some examples of electromagnetically excited acoustic noise include the hum of transformers, the whine of some rotating electric machines, or the buzz of fluorescent lamps. The hissing of high voltage transmission lines is due to corona discharge, not magnetism.”
taras22294 posts08-06-2019 10:39am
We have enabled listeners all over the world to get closer to their favorite music by making it sound as crystal-clear as possible.

Don’t want to seem like I’m nit-picking or anything but wouldn’t simply clear be mo bettah than crystal-clear....like just cut out the middle man ditch the crystal and go directly to clear. Kinda makes sense eh, or am I missing something ?

>>>>>Uh, Furutech was making a bad pun, aren’t all puns bad?, inasmuch as they were speaking about their “crystal” cable damping technique. 

By the way, Noone has been able to answer my Pop Quiz that asked the question, why do external vibration of audio cables hurt the sound?
More good stuff. Taking a page from Brilliant Pebbles? They say they aren’t Magic Crystals, so maybe not. 😬

Incorporated into selected Furutech products, NCF features a special crystalline material that has two ‘active’ properties. First, it generates negative ions that eliminate static. Second, it converts thermal energy into far infrared. Furutech combines this remarkable material with nano-sized ceramic particles and carbon powder for their additional ‘piezoelectric effect’ damping properties. The resulting Nano Crystal² Formula is the ultimate electrical and mechanical damping material.

Created by Furutech, it is found exclusively in Furutech products. No other manufacturer goes to the expense and effort that Furutech does to develop and produce high-end audio accessories and cables, and NCF is a cumulative result of 30 years of research and development of Pure Transmission high-end audio grade products.

Furutech has produced decades of unrivaled innovation within the audio industry. We have enabled listeners all over the world to get closer to their favorite music by making it sound as crystal-clear as possible. We have accomplished this enviable feat through careful research based upon solid scientific principles, and exhaustive listening tests to confirm those results.

For example, we have pioneered the use of many revolutionary technologies in our legendary line of Furutech products—the Floating Field Damper, the Two-Stage Cryogenic and Demagnetization Process and many, many others. Now we’re set to transform the audio industry with crystals.

These aren’t “magic” crystals, mind you, but a new crystallized material that actively generates negative ions to eliminate static and converts thermal energy into far infrared. There is nothing mysterious about the way these crystals work—quite simply, they improve audio performance in a very specific and measurable way.


Postscript: Furutech is also the company that fills or covers the tiny physical imperfection on the surface of wire using some kind of nano tech. You know, to produce a level playing field for the current traveling on the surface. Similar to the Audioquest technique of highly polishing the wire surface, one assumes. That’s assuming current does actually travel on the surface, which is completely up for grabs. Also, the crystal grains deformed by the pulling through the die operation that lie beneath the surface - what about them? Do they sweep them under the carpet.
This just in from Furutech,

“Alpha OCC-DUCC Speaker Bulk Cable DSS-4.1

Furutech’s α (Alpha) OCC‐DUCC is one of a select few of conductors that Furutech engineers have found to excel in sound reproduction. α (Alpha) OCC –DUCC is constructed using a combination of DUCC Ultra Crystallized High Purity Copper and Furutech’s world famous Pure Transmission α (Alpha)-OCC.  

Furutech DUCC Ultra Crystallized High Purity Copper -- supplied and regulated with strict quality control by Mitsubishi Materials Industries -- is one of the best conductors Furutech engineers have found for signal transmission. (MMI is the leading manufacturer of the highest-purity oxygen-free copper in the world) Mitsubishi process this extremely pure oxygen-free copper with new technology that optimally aligns the crystals while reducing the number of crystal-grain boundaries resulting in a tremendously efficient conductor. Straight OCC’s benefits are its larger “fibrous” crystals in which one dimension is longer than the other two so as to create as few crystal junctions as possible. Thus, OCC’s sensitivity to directionality; one path exhibits the least resistance. Furutech’s world famous Pure Transmission α-OCC is the result of further processing with the Alpha Super Cryogenic and Demagnetizing treatment. However, DUCC purity goes a significant step further. Mitsubishi Materials designed the new conductor to optimally align the copper crystal grain structure in addition to reducing crystal grain boundaries. As a result, DUCC is less sensitive to directionality than OCC.“
Becoming iron actually doesn’t guarantee it will become a black hole. Far from it. Only compressed stars with mass greater than 3-4 solar masses will become black holes. The rest will become something else, a Neutron Star. Of course, no iron or any other elements exist in a black hole as they have been crunched down to their basic subatomic particles. A black hole with the mass of the Earth would fit in the palm of your hand.
Skin effect to the rescue! Mystery solved! The current travels inside the conductor. In the case of a fuse, if the current traveled outside the fuse wire it would not melt when required. Hel-loo, people!

Distribution of current flow in a cylindrical conductor, shown in cross section. For alternating current, the current density decreases exponentially from the surface towards the inside. The skin depth, δ, is defined as the depth where the current density is just 1/e (about 37%) of the value at the surface; it depends on the frequency of the current and the electrical and magnetic properties of the conductor.Each 3-wire bundle in this power transmission installation acts as a single conductor. A single wire using the same amount of metal per kilometer would have higher losses due to the skin effect.

Skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor, and decreases with greater depths in the conductor. The electric current flows mainly at the "skin" of the conductor, between the outer surface and a level called the skin depth. The skin effect causes the effective resistance of the conductor to increase at higher frequencies where the skin depth is smaller, thus reducing the effective cross-section of the conductor. The skin effect is due to opposing eddy currents induced by the changing magnetic field resulting from the alternating current. At 60 Hz in copper, the skin depth is about 8.5 mm. At high frequencies the skin depth becomes much smaller. Increased AC resistance due to the skin effect can be mitigated by using specially woven litz wire. Because the interior of a large conductor carries so little of the current, tubular conductors such as pipe can be used to save weight and cost.

A few comments. The subject of the thread is speaker cables or wires, and the audio signal, not power cords. Also, why do cables with shielding often sound worse than cables without shielding if shielding is supposed to be all that? Finally, the subject is how electricity works; shielding is pretty much another topic or sub-topic.
almarg
For the record, I disagree with just about everything in Geoff’s recent posts in this thread. However I have no interest in engaging in further discussion of these matters, as I would rather focus on threads and discussions that have the potential to be constructive.

>>>>Thanks for not engaging me on this subject, Al. You’re the best. By the way, if you disagree with just about everything I said surely I must be on the right track. 🤗
Taras22, I can certainly understand your reluctance to say something a little more uh, authoritative on the dodgy subject of electricity. 😛
More to the point - the signal does not (rpt not) travel on the outside of the copper conductor. Even though the signal is comprised of photons. The basic understanding of how electricity works eluded the Belden engineer. He was probably an intern anyway.

Let’s look at the first electricity article published on the PS Audio website more closely. Here are two excerpts (in quotes) along with my comments.

“Also as we saw, the “signal” moves down the wire’s outer circumference, and not inthe wire. Therefore, the velocity of propagation of the signal (versus the velocity of the actual electrons) is determined by the dielectric or insulation material that the electromagnetic wave is predominantly traveling through. The slowing effect of the dielectric varies with frequency, throwing another variable into velocity of propagation—but giving us a way to play with it.”

>>>>>The signal moves (mostly) inside the wire. If it didn’t wire would not be directional and there would be no differences among conductors, or among purity of the metals. If it doesn’t make sense it’s not true. Furthermore, the signal doesn’t contain frequencies. It’s not the music waveform. The velocity of propagation is constant for a given conductor material, e.g., copper. That velocity is a high percentage of the speed of light.

“In one tested cable, the speed of a 20,000 Hz signal is about 110-million m/sec. The speed of a 20 Hz signal is about 5-million m/sec, or about 22 times slower. In other words, the impedance of a cable rises as we lower frequency due to the VP dropping, and capacitance value. Each is determined by the dielectric and the design spacing.”

>>>>>The “audio signal” is not a frequency nor does it have frequency components in it. The “audio signal” is a current, an electromagnetic wave. It is not (rpt not) the music waveform. We also know that the signal (electromagnetic wave) travels at different velocities in different materials. In copper the electromagnetic wave travels at a high percentage of the speed of light. That’s because the signal is composed of photons. In free space the electromagnetic signal, e.g., satellite signal, travels at the speed of light. We also know the drift velocity of electrons in copper is a constant. It can be calculated. It’s something like a meter per hour. And the direction of electron drift is the same as the direction of current, which alternates.

Not sure I would attach myself to Sue Kraft’s Star ⭐️ but of course that’s up to you. I introduced Sue Kraft to Romy the cat. Talk about a cat fight. 🙀

So, anyway I found four big errors in the Belden engineer’s article of how electricity works that PS Audio published on his website. Any takers? 
Gosh, Lizzie, I thought you argued about anything. You must be slipping.
Steve, you must have missed my post. There are many errors in the first article. My original post was,

Geoffkait: “Whoa! Somebody flunked electricity big time!. The audio signal is not the music waveform and electrons don’t travel through the cable. And magnetism is produced by current moving through wire, not by electrons. The B field is the induced magnetic field. Hel-loo!”

if I were PS Audio I wouldn’t have posted the error-fraught Belden engineer article on his website. Maybe he didn’t know any better. Maybe he assumed it was accurate since it was an engineer from a wire company and was trying to give credibility to his web site. Who knows? Maybe he was letting the Belden engineer speak for him. That’s the perception.
Uh, PS Audio is an amplifier and cable manufacturer, right? “A good primer except for the errors.” So funny! 🤗
Whoa! Somebody flunked electricity big time!. The audio signal is not the music waveform and electrons don’t travel through the cable. And magnetism is produced by current moving through wire, not by electrons. The B field is the induced magnetic field. Hel-loo!

Excerpt from one of the articles,

“When a cable carries a pure tone, perhaps a sine or square wave, then frequency and time are interchangeable, meaning that the only distortion of the signal would be attenuation. But music is far from a pure tone, and is a complex flood of frequencies in the 20 Hz-20 kHz range. When you send multiple frequencies down a cable, you introduce the possibility of time-based distortion, as different frequencies are affected differently by reactive variables such capacitance and inductance. Our ears are quick to hear the deterioration in fidelity based on frequency-arrival time and phase coherence.

To compound the issues, audio frequencies lie in an awkward electromagnetic region for conductors. Don’t forget that audio frequencies are at the bottom end of the spectrum; these are among the slowest, longest wavelengths of electromagnetic energy we harness.

Electromagnetic wave propagation: what exactly is the “signal”?

To understand why cable design has an effect on a signal in the first place, it’s important to understand exactly what this “signal” is, and how it “travels” along the cable.

Visualize the wire as a tube that’s the diameter of a set of marbles which you can push down the tube; the marbles are the electrons. Electrons don’t move without also causing electromagnetic fields, so now imagine a donut with its hole centered around this marble tube. This is the magnetic wave (B field). Now, take a bunch of toothpicks and stick them around the outside of the donut—this is the electric field (E field) produced by the moving electrons.”