I should go into regulators and their sonics a little. Yes, regulators have "a sound". Regulators are amplifiers that feed amplifiers, with the difference the "amplifier" amplifies incoming audio, while a regulator amplifies a DC reference voltage. But it’s an amplifier nonetheless.
Most "linear" type regulators use an internal servo feedback loop to maintain a steady output voltage ... a regulator basically simulates a perfect battery, using feedback to get as close as possible to the ideal. But ... that is an approximation, not the real thing. There are very slight delays responding to a change in current demand, and that is where coloration enter into the sound.
Some audio amplifying circuits have a steady current demand on the supply, and others bounce up and down, following the audio signal. A single-ended audio amplifier, whether tube or transistor, will have a current demand that mirrors the audio. You could put a current sense probe on the supply rails and hear perfectly good music (along with some buzz).
A Class AB amplifier, by contrast, will have quite distorted music on the power supply rails, because it is switching between (B) the upper device, (A) both devices at once, and (B) the lower device. This changes the efficiency of the output stage as the different operating modes change with the music. The switchover between modes can either be hard or soft, depending how the amplifier is biased and how the devices enter the AB cutoff region.
When the load is a Class AB device (like an output stage or an opamp), great demands are placed on the regulator. If it is not a perfect regulator (instantaneous and distortionless), coloration enters the picture. This is why regulators sound different, because a nonlinear load (such as Class AB) then exposes nonlinearities in the regulator.
A balanced Class A amplifier has the great advantage that the load looks pretty much like a resistor at all times, short of heavy clipping. By contrast, the load of a single-ended stage looks like the music it is playing, always varying, while Class AB is quite distorted thanks to a pair of devices switching on and off as the music goes through it. Only well-balanced Class A has a steady draw that doesn’t vary with the music, whether loud or soft, all the way down to zero.
Unfortunately, opamps are limited in not being able to dissipate much heat due to the small package size. Very few opamps are designed to be used with heat sinks. So the only way to keep heat emission low is efficient Class AB output stages, relying on feedback to linearize the crossover region (opamps typically have very high feedback). Higher powered transistor and tube amps also use Class AB to keep heat emission to acceptable levels, at the expense of higher distortion in the Class AB transition region.
The nonlinear load challenges the regulator design, and regulators for the output stage of transistor and tube power amps can be as large and heavy as the output stage they are powering. In effect, one amplifier driving another. This is why it is very rare for medium or high power transistor or tube amps to have regulated output stages. Usually they have a simple lowpass filter with no regulation, saving a great deal of cost and weight compared to the regulated alternative. With no regulation, the sound will always change, depending on the incoming voltage fluctuations, the AC waveshape, and the noise riding on top of the AC power.
The rigorous solution is fully balanced Class A operation for every stage of amplification, not just one or two, and low-noise precision regulators for each of those stages. This keeps the workload of each regulator to a minimum, and the current draw on each regulator is constant regardless of audio signal. It also maximizes isolation between the AC power line and the incoming audio signal.
The Raven also uses an isolation and phase splitting transformer for unbalanced RCA inputs, while balanced signals go straight to the 6SN7 tube grids. Regardless of the incoming signal, whether balanced or unbalanced, the stepped-resistor volume control and internal electronics are always in Class A balanced mode.