Oxia,
Carbon's RF transparency is directly related to it's conductivity!
Rock,
My understanding of carbon in spark plugs is that it is used *because* a spark gap is and extreme situation. An interconnect, however....
Herman,
Now my physics gets a little foggy (or perhaps it is the beer :-), but you do raise an interesting question. My inital cut is that for the resistance (which is important to IC's) is 1000 times greater than the other conductors (assuming equal conductor area and length). Thus, this presents a 1000 greater load on the source component. Moreover, if you're using carbon along with these other conductors, the effective resistance chucks the carbon component of the "conductor" into the noise: it's the metals which will relay the signal to the load.
So why is it there?
Let's just say we have 10 the cross sectional area of carbon over the metals. We still have 20db less signal being passed through the carbon. At this point, don't conductor geometries play a larger role in what is audible?
Thanks,
Carbon's RF transparency is directly related to it's conductivity!
Rock,
My understanding of carbon in spark plugs is that it is used *because* a spark gap is and extreme situation. An interconnect, however....
Herman,
Now my physics gets a little foggy (or perhaps it is the beer :-), but you do raise an interesting question. My inital cut is that for the resistance (which is important to IC's) is 1000 times greater than the other conductors (assuming equal conductor area and length). Thus, this presents a 1000 greater load on the source component. Moreover, if you're using carbon along with these other conductors, the effective resistance chucks the carbon component of the "conductor" into the noise: it's the metals which will relay the signal to the load.
So why is it there?
Let's just say we have 10 the cross sectional area of carbon over the metals. We still have 20db less signal being passed through the carbon. At this point, don't conductor geometries play a larger role in what is audible?
Thanks,