Question for users of bare wire ends speaker cable


There have been discussions on the use of bare wire ends as being the best way to get a good quality speaker cable connection. The only downside is the need to re-do the connection often because of the corrosion of the copper. As a part way measure can the ends be soldered or something else, to cut down or stop the corrosion without adversely affecting the signal??
sugarbrie

Showing 5 responses by ehider

Sean: Karls, Bomarc and Bishopwill have some very good points regarding "skin effect" and other electrical claims. As an Electrical Engineer myself who is personal friends of Kimber's first cable (not Kimber), along being involved with some realistically priced proprietary designs that smoke most of the ultra expensive cables. I can say unequivioquly that you should NEVER believe any of the "electrical theory" which manufacturers write about cable design. Many (but not all) cable manufacturers feel the need to write mumbo jumbo claims, based on "electrical theory" such as "skin effect", just so audiophiles will think their particular design has a unique scientific basis.

There are quite a few decent cables out there, with quite a few more stinkers (one of the worst starts with a "T"). Just remember, that "sizzle sells".

As an industry insider I've learned to be very wary of the so called "electrical theories" of circuits, cables and the like. Once you get to personally know the designers, you realize that most of their marketing material that you read is just that, marketing material!
Correction to my last post: I meant to say: "personal friends with the designer of Kimber's first cable"
I and others have done identical comparisons with cables which we designed that measure the same but have different size conductors. Yes you are right Sean, there is a DEFINITE difference in sound. Here is where you are incorrect though; You are assuming this sonic difference must be associated with "skin effect". I now ask you, why does this difference have to be attributed with "skin effect"? There are MANY other things that could be going on here other than skin effect when you change the amount of conductors and/or conductor size in a cable. The transmisity differential between conductors, the inherent motor effects of different conductors beside each other, and the ratio of conductor to insulator materials, are just three things (off the top of my head) that have changed, in your wire change scenario listed in the above thread.

"Skin effect" is, has been, and always will be a marketing driven explanation for those who don't fully understand the minutiae of electrical theory, regarding electrical wave propagation, within a particular wire design. We are talking about tons of high level math here! I have over 6 years of graduate study math under my belt, and I am still not qualified to understand the calculations of the effects of wire topology differences.

Many years ago everyone assumed that "negative feedback" was a definate bad sonic culprit, so that's what some the high end manufacturers used to "hook" the audiophiles. Many audiophiles bought into this "low feedback" design concept, not realizing that this was most likey not the reason that the particular amplifier sounded different another non low feedback design. Just because I ate carrots every day this year, and was diagnosed with cancer last week, does not mean that carrots cause cancer! Please watch out where you learn your audio theory from. If it's from the audio manufacturers, look out! It took me almost a decade to "unlearn' what I thought I knew about the sonic "cause and effects", and the associated electronic theory to substantiate these cause and effects.
Just for the record: I don't prescribe to the notion that a cables' sound can be characterized by electrical equations. You are very right that you CANNOT do an experiment with resistors, capacitors and inductors to mimic a cable. One major reason is because the electrical wave propagation characteristic through these passive devices are much different than through any sort of cable. Anybody on this forum that has taken 4 or more years of high level calculus, should be able to tell you that the math involved to understand electrical wave propagation is extremely complex. This is what I was referring to when I wrote the words "calculations".

BTW: Sean you may think there is "bickering" going on here, but I think people are trying to open your mind to new ideas and concepts. Every post should be treated as a measure of learning and only a personal attack only when people don't back up their comments, or make malicious, demeaning statements about you. I've read many of your posts, and you make some extremely good comments, helpful suggestions and provide a great overview on many topics. But please try to learn from others also. This is what I think myself, Karls, bomarc and Bishopwill have been trying to do with our comments regarding your statements. We are not "bickering", we are expanding on your ideas, hypothesizes and assumptions.
Sean: It's good to see that you're trying to understand people's views and learn from them. I guess I just interpreted your threads as being very defensive. Perhaps a statement saying something like : "good point, I never thought about it that way" is something we all need to say more.

In regard to your statement of "velocity of propagation", that is only ONE factor of wave propagation, and a simple one at that. I think you are not realizing that to do a complete wave propagation analysis of a wire, it cannot be a static measurement, but a time slice based series of measurements. This, in conjunction with the varying phase vector of the load, it's various characteristic interactions, the associated every changing signal (both in amplitude, frequency and time) all add up to some unbelievable complex calculations (we are talking about having to use a Cray computer here).

To elaborate: since there is not a definitive point in time or reference signal or load (recorded music is the opposite of a static single frequency, or time and amplitude), you then need to capture every millisecond of data, and chart it against the next millisecond. This plot would then have to be repeated for a whole series of loads with associated phase vectors, along with a whole series of dynamic signals, which compose a plethora of frequencies and amplitudes. When you add up all the permutations, you end up with over 100,000,000,000,000 measurement possibilities (and I'm being very conservative with my calculations!). This is why a measurement is so hard, because it isn't just one measurement. The world we live in is dynamic not static, this one of the reasons why Calculus was developed: to have the ability to describe non-linear functions at a specific slice in time.

Many things will be able to be measured and quantified in audio components and wires within 25 years. By then, the world should have access to computers that have processors that can do trillions of calculations per second. With the harnessing or this processing power, many things in dynamic environments will be able to be broken down and analyzed, with an excellent understanding of what is the cause and effect, regarding design iterations of electron carrying and transfer devices.