Interconnect Inductance vs. Capacitance


How do the inductance and capacitance of ICs impact the sound? I have seen some ICs that have low inductance but high capacitance. On the other hand, some ICs have high inductance but low capacitance. One manufacturer even claims that his higher models have higher capacitance.

So can someone explain to me how they impact the sound?
vett93

Showing 3 responses by redkiwi

For an interconnect, there is no question you want low capacitance or the treble begins to roll off, coupled with group delay. The group delay can have a significant effect on the subjective impression of speed and dynamics of much of the music spectrum. But inductance is another matter. Inductance in an interconnect is really only relevant in that it affects the characteristic impedance of the cable. In an ideal world the characteristic impedance of an interconnect would be at, or slightly above, the output impedance of the upstream component. If the characteristic impedance of the cable is below the output impedance of the upstream component then phase errors can get audible, particularly in the bass, and is a major cause of the belief that interconnects can be system dependent. If the characteristic impedance of the cable is too far above the output impedance of the upstream component then it can act as an antenna and pick up noise and fine detail will be lost or obscured. With no standard for output impedance for audio components then one of the challenges for a designer of interconnects is how to minimize the problems of impedance mismatches. Some claim to have effectively eliminated this problem with their designs.
Hi Al. I should disclose that I am a cable designer and so you can accuse me of being a snake oil salesman now (insert smiley face here - I am taking a shot at myself, not at you). But responding to your point. One of the problems in science is that when experimenting you need to assume certain variables are not relevant in order to observe the impacts of an experiment on what you believe to be relevant. You cannot screen out all other variables all of the time. This leads the electrical engineering field to have certain beliefs - such as the one you have expressed, that many issues in transmission theory don't apply at audio frequencies for short cables. That is fine for the EE that simply wants to make something work. To optimize a system, it is not good enough. In pushing the envelope to develop better audio cables many/most designers I know revisit what the typical EE assumes away as irrelevant, and tests whether indeed it makes a difference. A good case in point these days is skin effect. Most EEs I know that are not working in high end audio will assume skin effect is an irrelevant issue for audio frequencies, and yet there are many of us designing cables who have found otherwise, and many designs are specifically targeted at dealing with skin effect in various ways today. Another example is in the area of digital cables, where one of the smartest designers I know, Dan Lavry, has at least once stated his belief that using a correct impedance cable is not relevant for short lengths of a meter or so, yet most digital cable designers have found otherwise. Using absolute beliefs is a necessary part of life, or we would be hopelessly confused. But testing for how those absolutes are really shades of gray is necessary for some innovations to occur. When I design, I just try different things. When I hear an effect, I search for a theory that might explain it. Armed with a possible theory, I then conduct an experiment to see if in fact using the theory to predict the outcome of different iterations proves to be useful. If it does then it adds to the mix of theories I use to optimize a cable's performance. In the vast majority of cases the theories that I use are accepted theories, just not normally considered to be relevant at audio frequencies for short cables. I suspect we are wandering far from the OP's interests, my apologies to the OP.
My point is that there often is theory. It is just that we don't always consider it relevant to the particular context, and it turns out it is.

In the case of the larger cap - it is possible that more bass extension reduced group delay, but it is also possible the larger cap released energy more slowly, smearing the signal slightly and giving the impression of greater weight. One therefore needs to experiment to confirm what is happening.

I wasn't referring so much to my interconnects when referring to skin effect ideas that are floating around. Some of the ones I find interesting are those being talked about by Supra and LessLoss, for example. With cable experiments I very rarely use any measuring equipment other than the ears of a listening panel so specs aren't possible.