how can a cheap cd drive equal a fine transport?


Once a "perfect" file is on a HD, I grasp why playback may be better than reading data from a drive in real-time. But when ripping a cd, the digital data stream is read by a cd drive, i.e, a flimsy, cheap transport. The best transports produce a data stream with less error, or jitter. Large amounts of error correction are audible, so presumably, the less error correction applied, the better. So at the point where the cd is read by a drive, before applying error correction, before it even reaches a HD (or the prior optimal solution, a Genesis Digital Lens), how can a cheap computer drive produce a data stream comparable to a good transport? How can programs which try it 64 times, or whatever, produce a better result? Aren't they just using error correction (or checksum algorthms to determine which attempt got the best result, out of many error-laden reads) compensate for high initial error rates? Are fine transports almost pointless, now?
lloydc

Showing 1 response by lostbears


Computers work differently than CD or DVD transports. With a computer every bit must be right or a program will not run. When a computer program such as EAC rips a disc it reads the data over and over to get every bit correct. A program such as EAC can make a bit perfect copy of a disc. When you play a disc on a transport it plays as it is read. There is no rereading to get the bits right. If the transport can't read a bit it uses error correction to decide what the bit should be.

But computers are not perfect. They have a lot of RF and EM interference. They are also not built as well as a high end transport. Computers also need to be set up properly for audio to sound there best. That said I am not selling my high end CD player any time soon.