Actually, it was the Macro Reference that had 30,000. In my opinion, damping factor means more, with the more acoustic watts that are desired from the low frequency driver. If you have a very powerful woofer (or perhaps several driven from one amp) in a concert sound reinforcement situation, you want all the damping factor and current reserve you can get.
For home hi-fi, you generally have specialized woofers with a long linear excursion designed around less absolute peak dB output in the first place, so they are inherently more forgiving, especially at the lower ouput levels that occur in the home.
Also, with smaller midwoofers (like those in every "box speaker"), their moving mass is so much lighter than larger woofers, that they can get by with less damping control from the amplifier.
A manufacturer called Meyer Sound Labs has a new active studio monitor speaker that employs the familiar servo feedback circuit on its woofer (but uses a microphone on a bar mounted in front of the woofer, rather than the consumer hi-fi method of using an accelerometer on the woofer's cone). They claim that this circuit allows faster decay time than a "typical electrostatic". That doesn't surprise me much, since larger esl panels are terrible at stopping, once they get started (every MLSSA plot that I've ever seen, in Stereophile and elsewhere, fully bears this out).
For home hi-fi, you generally have specialized woofers with a long linear excursion designed around less absolute peak dB output in the first place, so they are inherently more forgiving, especially at the lower ouput levels that occur in the home.
Also, with smaller midwoofers (like those in every "box speaker"), their moving mass is so much lighter than larger woofers, that they can get by with less damping control from the amplifier.
A manufacturer called Meyer Sound Labs has a new active studio monitor speaker that employs the familiar servo feedback circuit on its woofer (but uses a microphone on a bar mounted in front of the woofer, rather than the consumer hi-fi method of using an accelerometer on the woofer's cone). They claim that this circuit allows faster decay time than a "typical electrostatic". That doesn't surprise me much, since larger esl panels are terrible at stopping, once they get started (every MLSSA plot that I've ever seen, in Stereophile and elsewhere, fully bears this out).